Analisa Classification Decision Tree C45 dan Naïve Bayes Pada Indikasi Penyakit Diabetes Menggunakan Rapid Miner

Penulis

  • Iswadi Hamzah Universitas Pembangunan Panca Budi Medan
  • Zulham Sitorus Universitas Pembangunan Panca Budi
  • Khairul Universitas Pembangunan Panca Budi

DOI:

https://doi.org/10.61306/jnastek.v4i1.126

Kata Kunci:

Decision Tree, Diabetes, Naïve Bayes, Rapid Miner

Abstrak

In Indonesia, the rate of diabetes sufferers continues to increase, so this is deemed necessary to pay attention to by the Indonesian people in particular, for this reason this research is not the first to be conducted. Predicting diabetes can be done using various methods through various algorithms which are quite diverse, therefore it is necessary to conduct research on the algorithms used. To obtain new information, the Decision Tree algorithm with Naïve Bayes was tested using the Rapid Miner application. This test is carried out on data that has the attribute HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, Heart Diseaseor Attack, Phys Activity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCos, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income. All of these attributes serve as a guide in determining results, so that it can be known that the patient has diabetes.

Unduhan

Data unduhan belum tersedia.

Referensi

M. d. M. N. Arhami, Data Mining Algoritma dan Implementasi, Yogyakarta: CV Andi Offset (Penerbit ANDI, 2020.

d. E. T. L. Kusrini, Algoritma Data Mining., Yogyakarta: Andi, 2009.

A. Kurniawan, “Sitem Pakar Untuk Mendiagnosa Penyakit Tuna Grahita Dengan Metode Naive Bayes,” in Jurnal Ilmiah SINUS, 2013.

E. Kusrini dan Taufiq, Algoritma Data Mining, Jogjakarta: CV. Andi Offset, 2009.

A. Kristanto, Perancangan Sistem Informasi dan Aplikasinya, Yogyakarta: Gava Media, 2018.

A. Kurniawan, “Sitem Pakar Untuk Mendiagnosa Penyakit Tuna Grahita Dengan Metode Naive Bayes,” in Jurnal Ilmiah SINUS, 2013.

Y. N. B. &. S. F. Via, “Sistem Pendukung Keputusan Klasifikasi Tingkat Keganasan Kanker Payudara Dengan Metode Naive Bayes Classifier,” in Scan, 2 (X), pp.64-65, 2015.

M. A. a. N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,” InfoTekJar J. Nas. Inform. dan Teknol. Jar, vol. vol. 5 no. 1, pp. pp. 44–50,, 2020.

F. L. a. H. Nugroho, “Klasifikasi Daun Herbal Menggunakan Metode Naïve Bayes Classifier Dan Knearest Neighbor,” J. Simantec,, Vols. vol. 5, no. 1,, p. pp. 9–16, 2015.

Unduhan

Diterbitkan

05-01-2024

Cara Mengutip

Hamzah, I., Zulham Sitorus, & Khairul. (2024). Analisa Classification Decision Tree C45 dan Naïve Bayes Pada Indikasi Penyakit Diabetes Menggunakan Rapid Miner. Jurnal Nasional Teknologi Komputer, 4(1), 25–33. https://doi.org/10.61306/jnastek.v4i1.126