Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Jenis Jerawat Berbasis Web Menggunakan Streamlit

Penulis

  • Ayu Asyva Irfita Universtas Pembangunan Panca Budi
  • Muhammad Muttaqin Universtas Pembangunan Panca Budi
  • Hafni Universtas Pembangunan Panca Budi

Kata Kunci:

Convolutional Neural Network(CNN), Acne Classification, Streamlit, deep learning

Abstrak

Acne vulgaris is one of the most common skin problems, particularly on the facial area, and it negatively affects the quality of life of sufferers both physically and mentally. The prevalence of acne continues to rise globally and nationally, especially among adolescents and young adults. This study aims to classify types of acne using the Convolutional Neural Network (CNN) method and to implement the results into an interactive web-based application using Streamlit, in order to facilitate users in independently detecting acne.The dataset used consists of 360 acne images collected from Google and Kaggle, which were categorized into four acne types: whiteheads, blackheads, pustules, and nodules before being split into training and testing datasets. This study employs three CNN architectures: InceptionV3, VGG16, and EfficientNetB0. Training was carried out in two stages with a learning rate of 0.0001 during the initial phase and 0.000005 during the fine-tuning phase, across a total of 50 epochs. The models were trained using the Adam optimizer, along with callbacks such as EarlyStopping, ModelCheckpoint, and ReduceLROnPlateau to prevent overfitting and enhance training efficiency.Model performance was evaluated using a confusion matrix. The evaluation results showed that the VGG16 architecture achieved the highest accuracy at 97%, followed by InceptionV3 with 96%, while EfficientNetB0 only reached 26% accuracy. The best-performing model was then integrated into a Streamlit-based application featuring a simple interface that allows users to upload facial images, detect acne types, and receive initial treatment recommendations.

Unduhan

Data unduhan belum tersedia.

Referensi

J. E. Hall, Guyton and Hall Textbook of Medical Physiology, 13th ed. Philadelphia: W. B. Saunders, 2015.

H. T. Sibero, A. Sirajudin, dan D. Anggraini, “Prevalensi dan Gambaran Epidemiologi Akne Vulgaris di Provinsi Lampung,” Jurnal Kedokteran Universitas Lampung, vol. 3, no. 2, pp. 308– 312, 2019.

A. N. All About Skincare, 2nd ed., Nimas, Ed. Yogyakarta: Brilliant, 2021, hal. 7–175.

F. Sudana Putra, Kusrini, dan M. P. Kurniawan, “Deteksi Otomatis Jerawat Wajah Menggunakan Metode Convolutional Neural Network (CNN),” Journal of Information Technology, vol. 1, no. 2, pp. 30–34, 2021.Tersedia: https://doi.org/10.46229/jifotech.v1i2.308.

F. S. Dewi, Ramadhani, dan S. Djasmayena, “Klasifikasi Jenis Jerawat berdasarkan Gambar Menggunakan Algoritma CNN (Convolutional Neural Network),” Hello World: Jurnal Ilmu Komputer, vol. 3, no. 2, pp. 68–73, Jul. 2024, doi: 10.562211/heloworld.v3i2.518.

H. I. Islam, M. K. Mulyadien, U. Enri, U. Singaperbangsa, dan K. Abstract, “Penerapan Algoritma C4.5 dalam Klasifikasi Status Gizi Balita,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 10, pp. 116–125, 2022.Tersedia: https://doi.org/10.5281/zenodo.6791722.

A. A. Meliala dan R. A. S. Lubis, “Hubungan Akne Vulgaris dengan Gejala Ansietas pada Mahasiswa Fakultas Kedokteran Universitas Muhammadiyah Sumatera Utara,” Jurnal Pandu Husada, vol. 1, no. 2, p. 101, Mei 2020.

Nurkasanah and murinto,”Klasifikasi Penyakit Kulit Wajah Menggunakan

Metode Convolutional Neural Network,”Sainteks,vo18 no.2,p.183,Feb.2022, doi:10.30595/sainteks. vl8i2.121188.

Wahyudi Setiawan, Deep Learning menggunakan Convolutional Neuarl Network , Cetakan 1. Malang: Media Nusa Creative, 2021.

M. Marliana, S. Sartini, dan A. Karim, “Efektivitas Beberapa Produk Pembersih Wajah Antiacne terhadap Bakteri Penyebab Jerawat Propionibacterium acnes,” BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), vol. 5, no. 1, pp. 31–41, 2018. Tersedia: https://doi.org/10.31289/biolink.v5i1.1668.

Supiyandi, M. A. Mujib, K. Azis, R. Abdillah, dan S. N. Iskandar, “Penerapan Teknologi Pengolahan Citra dalam Analisis Data Visual pada Tinjauan Komprehensif,” *Jurnal Kendali Teknik dan Sains*, vol. 2, no. 3, pp. 179–.

H. Herdianto and D. Nasution, "Implementasi metode CNN untuk klasifikasi objek," METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 7, no. 1, pp. 54- 60, Apr. 2023. doi: 10.46880/jmika.Vol7No1.pp54-60.

M. Rasyid, Z. Sitorus, R. F. Wijaya, M. Iqbal, and K. Khairul, "Machine learning analysis in improving the efficiency of the student admission decision making process new at Panca Budi Medan Development University," unpublished.

H. Herdianto, D. Nasution, N. S. Atmaja, and S. Ramadhan, "Penerapan Deep Learning YOLO untuk Pengukuran Jarak Objek Menggunakan Mono Kamera," METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 8, no. 1, pp. 51-56, Apr. 2024. doi:

46880/jmika.Vol8No1.pp51-56.

A. Khaliq and M. Muttaqin, "Early Earthquake Prediction Using a Hybrid Feature Selection and Ensemble Learning Approach," International Journal of Computer Sciences and Mathematics Engineering, vol. 3, no. 3, pp. 331, Sep. 2024. E-ISSN: 2962-4274. Available:

Unduhan

Diterbitkan

14-06-2025

Cara Mengutip

Ayu Asyva Irfita, Muhammad Muttaqin, & Hafni. (2025). Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Jenis Jerawat Berbasis Web Menggunakan Streamlit. Jurnal Nasional Teknologi Komputer, 5(3), 296–311. Diambil dari https://publikasi.hawari.id/index.php/jnastek/article/view/214

Terbitan

Bagian

Artikel