Perbandingan Genetic Algorithm dan Ant Colony Optimization dalam Optimasi Penjadwalan Perawat di Rumah Sakit
DOI:
https://doi.org/10.61306/jnastek.v6i1.351Kata Kunci:
Genetic Algorithm, Ant Colony Optimization, Nurse Scheduling, Metaheuristic, OptimizationAbstrak
Nurse scheduling is a complex problem that must satisfy various constraints, such as shift requirements, work hour constraints, and nurse preferences. This study compares the performance of two metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), with each algorithm producing the best schedule. The evaluation is based on solution quality, convergence, multi-run consistency, and computation time. The results show that ACO produces higher solution quality and consistency, with an average fitness of 8268.06 and a desired shift fulfillment rate of 86%. Conversely, GA excels in time efficiency, with an average execution time of 15.07 seconds, significantly faster than ACO's 72.05 seconds. This difference creates a trade-off between optimal quality and execution speed. These findings suggest that algorithm selection is highly dependent on the hospital's operational needs. ACO, for example, is better suited for nurse satisfaction, while GA is better suited for rapid response.
Unduhan
Referensi
F. Jamil, H. I. Azhari, S. Anggraeni, S. R. Anjani, and H. Ridwan, “Literature Review: Pengaruh Manajemen Waktu dan Sumber Daya Manusia terhadap Beban Kerja Perawat dan Implikasinya terhadap Keselamatan Pasien,” J. Penelit. Inov., vol. 5, no. 2, pp. 2047–2054, 2025, doi: 10.54082/jupin.1447.
Y. Saputra and D. Irawan, “Penerapan Algoritma Greedy Untuk Penyusunan Jadwal Kerja Di Industri Perhotelan,” J. Data Sains Dan Teknol. Inf., vol. 2, no. 01, pp. 31–40, 2024, doi: 10.62003/c53fxr97.
D. Wenston, M. Irfan, and R. D. Sanjaya, “Analisis Sistem Penjadwalan Shift Dan Libur Kerja Dalam Operasional Dapur Can Ngopi,” Juparita (Jurnal Pariwisata Tawangmangu, vol. 3, no. 2, pp. 63–70, 2025, [Online]. Available: http://10.0.241.0/juparita.v3i2.771
M. Iqbal, M. Zarlis, and H. Mawengkang, “Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Model Pendekatan Metaheuristik Dalam Penyelesaian optimisasi Kombinatorial,” vol. 97, pp. 92–97, 2020.
M. A. Saputra, A. Rahim, M. K. Romadhoni, and M. S. Burhan, “Penyelesaian Traveling Salesman Problem Dengan Algoritma Ant Colony Menggunakan Multi Processing,” Pros. Semin. Implementasi Teknol. Inf. dan Komun., vol. 4, no. 1, pp. 171–178, 2025, doi: 10.31284/p.semtik.2025-1.7008.
A. Hidayati, A. Argianto, and B. P. Rini, “Inovasi Sistem Penjadwalan Laboratorium Terpadu melalui Aplikasi M-Room berbasis Google Spreadsheet di Poltekkes Kemenkes Jakarta I,” J. Pengelolaan Lab. Pendidik., vol. 7, no. 2, pp. 139–150, 2025, doi: 10.14710/jplp.7.2.139-150.
R. Cesilia, “e-ISSN 2774-5155 p-ISSN 2774-5147,” vol. 4, no. 10, pp. 909–922, 2024.
Harjuni, M. Assidiq, and C. R. Sari, “PENERAPAN ALGORITMA GENETIKA DALAM OPTIMISASI PENJADWALAN TUGAS PADA CLOUD COMPUTING,” vol. 11, no. 2, pp. 19–25, 2025.
Moedjiono, Karjono, and D. Kurniawan, “93603-ID-none,” J. TICOM, 2016.
A. Ihsan, T. A. Adlie, and S. Harliansyah, “Optimalisasi Pencarian Jalur Terpendek Mobile Robot dengan Menggunakan Metode Ant Colony Optimization (ACO),” Techné J. Ilm. Elektrotek., vol. 23, no. 1, pp. 39–54, 2024, doi: 10.31358/techne.v23i1.389.
M. I. Romadhon and R. A. Nugraha, “KONSULI: Knowledge on Sustainability and Innovative Technology Optimisasi dan Permasalahan Pada Pembangkit Listrik Berbasis Energi baru Terbarukan,” vol. 1, no. 1, pp. 44–67, 2025.
F. Y. Arini, J. N. Bagaskara, A. S. Anwar, N. A. Khairunnisa, Y. Pandu, and S. Aji, “Feature Selection Optimization Using the Hybrid ARO-DBSCAN Algorithm to Improve the Accuracy of the K-Nearest Neighbor Classification Model Optimasi Seleksi Fitur Menggunakan Algoritma Hybrid ARO-DBSCAN untuk Meningkatkan Akurasi Model Klasifikasi K-Nearest Neighbor,” vol. 6, no. January, pp. 1–10, 2026.
Y. A. Pradana et al., “Penentuan Rute Optimal Wisata di Kota dan Kabupaten Madiun Menggunakan Algoritma Genetika,” J. Keilmuan dan Keislam., pp. 49–56, 2024, doi: 10.23917/jkk.v3i1.223.
W. Prasetya and D. Jollyta, “Penerapan Algoritma Genetika Dalam Penjadwalan Mata Kuliah,” J. Mhs. Apl. Teknol. Komput. dan Inf., vol. 5, no. 2, pp. 144–147, 2023, doi: 10.31294/inf.v10i2.16701.
F. A. Putri, “Penjadwalan Kegiatan Belajar Menggunakan Algoritma Ant Colony,” J. Sist. Inf. Kaputama, vol. 4, no. 2, pp. 123–128, 2020.
D. Udjulawa and S. Oktarina, “Penerapan Algoritma Ant Colony Optimization Untuk Pencarian Rute Terpendek Lokasi Wisata,” Klik - J. Ilmu Komput., vol. 3, no. 1, pp. 26–33, 2022, doi: 10.56869/klik.v3i1.326.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
HAK CIPTA
Hak cipta atas artikel apapun pada Jurnal Nasional Teknologi Komputer (JNASTEK) dipegang penuh oleh penulisnya dibawah lisensi Creative Commons Attribution-ShareAlike 4.0 International License.
1. Penulis mengakui bahwa Jurnal Nasional Teknologi Komputer (JNASTEK) berhak sebagai yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution-ShareAlike 4.0 International License - CC BY-SA.
2. Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain (misal: dikirim ke respository institusi penulis, publikasi kedalam buku, dll), dengan mengakui bahwa naskah telah terbit pertama kali pada Jurnal Nasional Teknologi Komputer (JNASTEK).
LISENSI
Jurnal Nasional Teknologi Komputer (JNASTEK) diterbitkan berdasarkan ketentuan Creative Commons Attribution-ShareAlike 4.0 International License. Lisensi ini mengizinkan setiap orang untuk menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun, menggubah, mengubah, dan membuat turunan dari materi ini untuk kepentingan apapun, termasuk kepentingan komersial, selama mereka mencantumkan kredit kepada Penulis atas ciptaan asli.














