Analisis Sentimen Opini Publik Terhadap Cyberbullying Pada Komentar Instagram Menggunakan Multinomial Naive Bayes

Penulis

  • Stephanie Universitas Multi Data Palembang
  • Hafidz Irsyad Universitas Multi Data Palembang

DOI:

https://doi.org/10.61306/jnastek.v4i4.157

Kata Kunci:

Sentiment Analysis, Cyberbullying, Instagram, Multinomial, Naïve Bayes

Abstrak

This study aims to evaluate the effectiveness of a sentiment classification model using the Naïve Bayes algorithm on Instagram comment data. The main focus of this research is to measure the performance of the model in terms of accuracy, precision, recall, and F1-score. The data used in this study includes 400 Instagram comments that have been labeled with negative and positive sentiments. Data pre-processing involved case folding, tokenization, stopword removal, and stemming, followed by TF-IDF weighting to measure the importance of each word. The data was divided into 80% for training and 20% for testing. The Naïve Bayes model was then applied to the test data to predict sentiment. The evaluation results show that the model achieved an accuracy of 86.25%, with a precision of 85.56%, recall of 86.46%, and F1-score of 85.88%. For the negative class, the precision reached 91%, recall 85%, and F1-score 88%, while for the positive class, the precision was 80%, recall 88%, and F1-score 84%. These findings show that the Naïve Bayes model is effective in classifying the sentiment of Instagram comments and provides useful insights in understanding public sentiment towards the issue of cyberbullying

Unduhan

Data unduhan belum tersedia.

Referensi

M. I. H. A. D. Akbari, A. Novianty, and C. Setianingsih, “Analisis Sentimen Menggunakan Metode Learning Vector Quantization,” e-Proceeding Eng., vol. 4, no. 2, p. 2283, 2017, [Online]. Available: https://openlibrary.telkomuniversity.ac.id/pustaka/files/135356/jurnal_eproc/analisis-sentimen-menggunakan-metode-learning-vector-quantization.pdf

W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Creat. Inf. Technol. J., vol. 4, no. 2, p. 151, 2018, doi: 10.24076/citec.2017v4i2.106. DOI: https://doi.org/10.24076/citec.2017v4i2.106

N. A. Rakhmawati, R. B. Waskitho, D. A. Rahman, and M. F. A. U. Nuha, “Klasterisasi Topik Konten Channel Youtube Gaming Indonesia Menggunakan Latent Dirichlet Allocation,” J. Inf. Eng. Educ. Technol., vol. 5, no. 2, pp. 78–83, 2021, doi: 10.26740/jieet.v5n2.p78-83. DOI: https://doi.org/10.26740/jieet.v5n2.p78-83

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835. DOI: https://doi.org/10.30865/mib.v5i2.2835

N. Nofiyani and W. Wulandari, “Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1621, 2022, doi: 10.30865/mib.v6i3.4332. DOI: https://doi.org/10.30865/mib.v6i3.4332

Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127. DOI: https://doi.org/10.55606/jurritek.v1i1.127

A. Rahman and A. Doewes, “Online News Classification Using Multinomial Naive Bayes,” J. Ilm. Teknol. dan Inf., vol. 6, no. 1, pp. 32–38, 2017, [Online]. Available: www.kompas.com

M. K. Maulidina, “Analisis Sentimen Komentar Warganet Terhadap Postingan Instagram Menggunakan Metode Naive Bayes Classifier dan TF-IDF,” Naskah Publ. Univ. Teknol. Yogyakarta, pp. 1–15, 2020.

N. G. Ramadhan and F. D. Adhinata, “Sentiment analysis on vaccine COVID-19 using word count and Gaussian Naïve Bayes,” Indones. J. Electr. Eng. Comput. Sci., vol. 27, no. 1, pp. 1765–1772, 2022, doi: 10.11591/ijeecs.v26.i3.pp1765-1772. DOI: https://doi.org/10.11591/ijeecs.v26.i3.pp1765-1772

Nikmatun, I. Alvi, Waspada, and Indra, “Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

M. Luthfi Bangun Permadi and R. Gumilang, “Penerapan Algoritma CNN (Convolutional Neural Network) Untuk Deteksi Dan Klasifikasi Target Militer Berdasarkan Citra Satelit,” J. Sos. Teknol., vol. 4, no. 2, pp. 134–143, 2024, doi: 10.59188/jurnalsostech.v4i2.1138. DOI: https://doi.org/10.59188/jurnalsostech.v4i2.1138

A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 504–510, 2021, doi: 10.29207/resti.v5i3.3067. DOI: https://doi.org/10.29207/resti.v5i3.3067

Diterbitkan

14-10-2024

Cara Mengutip

Stephanie, & Irsyad, H. (2024). Analisis Sentimen Opini Publik Terhadap Cyberbullying Pada Komentar Instagram Menggunakan Multinomial Naive Bayes. Jurnal Nasional Teknologi Komputer, 4(4), 44–57. https://doi.org/10.61306/jnastek.v4i4.157

Terbitan

Bagian

Artikel