PEMANFAATAN KERANGKA KERJA INVESTIGASI FORENSIK JARINGAN UNTUK IDENTIFIKASI SERANGAN JARINGAN MENGGUNAKAN SISTEM DETEKSI INTRUSI (IDS)

Penulis

  • Abdul Khaliq universitas pembangunan panca budi
  • Sri Novida Sari Institut Teknologi dan Bisnis

Kata Kunci:

DOS Attack, Network Attack, Network Scanning, Network Forensic Investigation Framework

Abstrak

One of the media to secure computers is to apply Intrusion Detection System (IDS) technology. IDS is an early detection system in the event of a computer network attack. The IDS will alert the computer network administrator in the event of a computer network attack. IDS also records all attempts and activities aimed at disrupting computer networks and other computer network attacks. The purpose of this study is to implement IDS on network systems and analyze IDS logs to determine the types and types of computer network attacks. Logs on the IDS will be analyzed in depth to be used as an effort to improve computer network security. The research method that will be used is applied research. The research was carried out using the Network Forensic Investigation Framework proposed by Pilli, Joshi and Niyogi. The stages of the Network Forensic Investigation Framework are used to perform network simulations, analysis and investigations to determine the types of computer network attacks. The results show that the Network Forensic Investigation Framework facilitates the investigation process when a network attack occurs. The Network Forensic Investigation Framework is effectively used when the computer network has network security support applications such as IDS or others. IDS is effective in detecting network scanning activities and DOS attacks. IDS provides alerts to administrators because there are activities that violate the rules on the IDS.

Unduhan

Data unduhan belum tersedia.

Referensi

Uğurlu, M., & Doğru, İ. A. (2019, September). Survei tentang sistem deteksi intrusi berbasis pembelajaran mendalam. Pada tahun 2019 4th International Conference on Computer Science and Engineering (UBMK) (hlm. 223-228). IEEE.

Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., Kevin, I., & Wang, K. (2021). Serangan musuh hierarkis terhadap sistem deteksi intrusi jaringan ioT berbasis jaringan saraf grafik. Jurnal Internet of Things IEEE.

Kumar, P., Gupta, G. P., & Tripathi, R. (2021). Desain sistem deteksi intrusi berbasis anomali menggunakan komputasi kabut untuk jaringan IoT. Kontrol Otomatis dan Ilmu Komputer, 55(2), 137-147.

Ghabban, F. M., Alfadli, I. M., Ameerbakhsh, O., AbuAli, A. N., Al-Dhaqm, A., & Al-Khasawneh, M. A. (2021, Juni). Analisis komparatif alat forensik jaringan dan proses forensik jaringan. Pada Tahun 2021 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE) (hlm. 78-83). IEEE.

Barik, K., Das, S., Konar, K., Banik, B. C., & Banerjee, A. (2021). Menjelajahi persyaratan pengguna alat forensik jaringan. Proses Transisi Global, 2(2), 350-354.

Pilli, E. S., Joshi, R. C., & Niyogi, R. (2010). Kerangka kerja forensik jaringan: Tantangan survei dan penelitian. investigasi digital, 7(1-2), 14-27.

IQBAL, M., HAMDANI, M. S. H., NABABAN, A. A., FOZILJONOVA, N., WASITO, I., BENTALEB, A., ... & FIRDAUS, A. (2022). NEURO NETWORK TECHNIQUES OF TELEMETRY MULTIVARIATE TIME SERIES PROCESSING AND THEIR APPLICATIONS IN INDUSTRY. Journal of Theoretical and Applied Information Technology, 100(09).

Iqbal, M., Zarlis, M., Tulus, T., & Mawengkang, H. (2020, February). Model Pendekatan Metaheuristik Dalam Penyelesaian optimisasi Kombinatorial. In Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) (Vol. 1, No. 1, pp. 92-97).

Sangher, K. S., & Singh, A. (2019, April). Tinjauan sistematis–optimasi algoritma deteksi intrusi untuk analisis dan investigasi forensik jaringan. Pada Konferensi Internasional 2019 tentang Otomasi, Komputasi dan Manajemen Teknologi (ICACTM) (hlm. 132-136). IEEE.

Unduhan

Diterbitkan

18-08-2022

Terbitan

Bagian

Artikel